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We address propagation of light in nonlinear twisted multi-
core fibers with alternating amplifying and absorbing cores
that are arranged into the parity-time (PT )-symmetric
structure. In this structure, the coupling strength between
neighboring cores and global energy transport can be con-
trolled not only by the nonlinearity, but also by gain and
losses and by the fiber twisting rate. The threshold level of
gain/losses, at which PT -symmetry breaking occurs, is a
non-monotonic function of the fiber twisting rate, and it
can be reduced nearly to zero or, instead, notably increased
just by changing this rate. Nonlinearity usually leads to the
monotonic reduction of the symmetry-breaking threshold
in such fibers. © 2017 Optical Society of America

OCIS codes: (190.5940) Self-action effects; (070.7345) Wave

propagation.
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The concept of parity-time �PT � symmetry that was initially
introduced in quantum mechanics [1] has already penetrated
into many other areas of science (see [2,3] for recent reviews).
Various optical realizations of the PT -symmetric systems, such
as couplers, multicore fibers, shallow photonic lattices, and
photonic crystals with inhomogeneous refractive index land-
scapes obeying the PT -symmetry condition n�r� � n��−r�,
where n�r� is the complex refractive index, were suggested.
Despite the presence of gain and losses in such systems, the
internal currents from amplifying to absorbing domains make
it possible for the propagation of the beam without net ampli-
fication or attenuation. The most representative property of the
PT -symmetric system is the existence of the threshold level of
gain/losses, above which the spectrum of the system becomes
complex, and the propagation of the modes is always accom-
panied by their amplification or attenuation [4]. The breakup
of the PT symmetry was observed experimentally [5,6].
PT -symmetric structures that remain invariable in the

direction of light propagation have been used for demonstra-
tion of the switching, localization, and nonreciprocal soliton
scattering [7–13]. At the same time, longitudinal variation
of the parameters of a PT -symmetric system substantially en-
riches the spectrum of the available phenomena. Such dynamic
structures were used for illustration of the pseudo-PT sym-
metry [14–16], dynamic localization [17,18], mode conversion
[19], parametric instability [20], and stochastic effects [21].

The PT -symmetry-breaking threshold depends on several
factors, most notably on the size of the system. Usually, this
threshold decreases with the increase in the number of elements
(e.g., waveguides) in the system [22]. However, interesting
exceptions are encountered in the discrete circular waveguide
arrays, where the threshold changes in a step-like fashion with
the increase in the number of waveguides [23,24]. Similar size
effects were encountered in complex photonic crystals [25,26].
At the same time, longitudinal modulations of the parameters
of the PT -symmetric systems also notably affect the symmetry-
breaking threshold [15]. An interesting approach to control the
PT -symmetry-breaking threshold was introduced in [27],
where it was shown that the geometric twist leads to the
non-monotonic variation of this threshold in multicore fibers
with amplifying and absorbing cores. In the tight-binding
approximation, the twist introduces Peierls phases in the cou-
pling constants between cores of such a fiber and leads to the
appearance of an artificial gauge field [27,28]. Thus twisted
multicore fibers provide a unique setting, where one can study
the interplay between size effects and longitudinal modulations.

The aim of this Letter is to study the impact of twisting on
the dynamics of beam propagation in PT -symmetric multicore
fibers using a continuous and nonlinear model that accounts for
the transformation of the field distributions within individual
cores [29] and radiative losses that are omitted in the tight-
binding approach. We first discuss how the symmetry-breaking
threshold in a linear system is connected with the collision
of eigenvalues of different fiber modes upon increase of the
twisting rate. Then we consider a nonlinear fiber and discuss
the dependence of switching length on the twisting rate,
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nonlinearity strength, and the strength of gain/losses. We cal-
culate the nonlinear PT -symmetry-breaking threshold that
may be substantially lower than its linear counterpart.

We consider the propagation of light beams along the z axis
of the multicore twisted fiber with alternating absorbing and
amplifying cores and with the focusing cubic nonlinearity.
The evolution of the dimensionless field amplitude q in the
fiber is governed by the nonlinear Schrödinger equation:

i
∂q
∂z

� −
1

2

�
∂2q
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� ∂2q
∂y2

�
−R�r; z�q − σjqj2q: (1)

Here, the longitudinal z and the transverse r � fx; yg coordi-
nates are normalized to the diffraction length kr20 and the char-
acteristic transverse scale r0, respectively; k is the wavenumber;
and σ ≥ 0 is the strength of the focusing cubic nonlinearity (in
the linear medium, one has σ � 0). The refractive index land-
scape R varies with z due to the longitudinal twist of the fiber,
but at any distance z the symmetryR�r; z� � R��−r; z� is pre-
served. The fiber is composed of 2N single-mode cores placed
symmetrically on a ring, whose radius r is adjusted for each N
in such a way that the distance d between the adjacent cores
remains fixed. The cores with gain and losses alternate along the
ring, hence the complex refractive index profile in the mth core
is given by �pr � i2m�1pi�e−��x−xm�

2��y−ym�2 �2∕w4
, where w is

the width of the core; xm�z� and ym�z� are the coordinates
of the core centers on the ring; pr is the real part of the refractive
index, and pi is the strength of gain/losses. The coordinates of
the core centers vary with the distance z periodically, as

xm�z� � xm0 cos�αz� − ym0 sin�αz�;
ym�z� � xm0 sin�αz� � ym0 cos�αz�; (2)

where α is the rotation frequency (twisting rate). Further, we set
the distance between cores d � 1.7 and the width of the indi-
vidual cores w � 0.5. We consider structures possessing up to
2N � 6 cores. In contrast to discrete models, the continuous
model considered here takes into account radiative losses,
which grow with an increase of the rotation frequency α, and
unavoidable transformation of the modal fields due to the
nonlinearity and rotation.

To illustrate the impact of the twist on the coupling strength,
we first consider the simplest two-core linear structure with
pr � 8. At z � 0, only one (amplifying) core was excited with
the guided mode of the isolated waveguide calculated
at pi � 0. This choice of the input field allows minimizing
radiative losses at the initial stages of propagation. In the
conservative fiber �pi � 0� the energy flows U 1;2�z� �R
Ω1;Ω2

jqj2dxdy in the two cores (integration is performed over
the half-spaces Ω1;2 containing cores 1 and 2) oscillate out of
phase, even at α ≠ 0, so that the total energy flow U 1 � U 2

is conserved. In contrast, in the PT -symmetric fiber, the phase
shift between U 1;2�z� dependences is different from π and is
determined by pi. The total energy flow U 1 � U 2 is not con-
served at pi ≠ 0, but it oscillates periodically [2,3]. The ampli-
tude of oscillation of the energy flowsU 1;2 in two cores increases
with the increase of pi [see Fig. 1(a), where all pi values are below
the symmetry-breaking threshold pcri ≈ 0.22]. At α � 0.314,
the period of oscillation (i.e., the switching length L) grows with
pi, which is clearly in contrast to the behavior encountered in the
one-dimensional static PT -symmetric structures [4,18]. The
increase of the rotation frequency α also notably slows down

the switching in the PT -symmetric linear fibers and leads to
the increase of the amplitude of energy flow oscillations within
both cores [Fig. 1(b)]. From the physical point of view, the twist
of the fiber leads to the centrifugal and angular energy flows, so
that the field distribution in the fundamental mode in each core
shifts towards the outer periphery of the core. This reduces the
overlap of the modal fields in the neighboring cores and notably
slows down light tunneling, because the latter is determined by
this overlap. Also, the twisting introduces angular asymmetry. In
the discrete model of [27], such an angular asymmetry was taken
into account by introducing Peierls phases into the coupling
constants, but overall reduction of their moduli due to the ro-
tation was not taken into account. The continuous model (1)
accounts for all these effects.

To provide insight into the linear propagation dynamics in
twisted fiber, we calculate its linear eigenmodes q � wkeibkz
and the corresponding eigenvalues bk in the coordinate frame
that co-rotates with the fiber. In the rotating coordinate frame,
the refractive index landscape R�r 0� is independent of z, but
additional Coriolis terms appear in Eq. (1) that lead to the
centrifugal energy flows. The eigenvalues of linear modes
supported by four- and six-core fibers are shown in Fig. 2,
as functions of the rotation frequency α at pi � 0, pr � 10.
All eigenvalues monotonically grow with the increase of α,
but for illustrative purposes, we removed this growth in
Fig. 2 by subtracting from each eigenvalue bk the eigenvalue
of the mode that was the lowest at α � 0. One can see that
the twisting leads to the collision of different eigenvalues.
This has interesting implications for the propagation
dynamics. There are only two modes in the two-core fiber (not
shown in Fig. 2). When their eigenvalues approach each other,
the switching length L ∼ jb1 − b2j−1 increases [see Fig. 1(b) and

Fig. 1. (a) U 1�z� dependence at σ � 0, α � 0.314, and pi � 0.19
(1), pi � 0.2 (2), pi � 0.21 (3). (b) U 1�z� dependence at σ � 0,
pi � 0.16, and α � 0.314 (1), α � 0.628 (2). (c) U 1�z� dependence
at σ � 1, pi � 0, and α � 0 (1), α � 0.251 (2), α � 0.283 (3). Here
pr � 8.
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the dashed line in Fig. 5(a)], so that one can observe complete
arrest of the coupling. In the four- and six-core fibers, the
switching is never arrested completely, since all eigenvalues
never collide at one point (still several pairs of eigenvalues
can collide practically for the same α).

For large enough rotation frequency, the modes of the fiber
become leaky and acquire small delocalized background—a sig-
nature of radiative losses. We show eigenvalues only for the
rotation frequencies at which the modes are well localized
and radiative losses are absent. Thus, in the two-core fiber,
we actually did not reach the frequency α at which eigenvalues
b1 and b2 collide and a complete arrest of the coupling occurs.
Still, in four- and six-core fibers, the collision of eigenvalues is
clearly visible, since it occurs at smaller frequencies.

One obtains similar bk�α� dependencies in the PT -
symmetric twisted fiber with pi ≠ 0, but now pairs of eigenval-
ues can collide also upon increase of the strength of gain/losses
pi. This collision leads to the appearance of pairs of complex-
conjugate eigenvalues, and it indicates the breakup of the PT
symmetry. In this regime, some modes grow or decay exponen-
tially. Usually, the breakup of the PT symmetry occurs above
the critical level of gain/losses pi � pcri . However, for the rota-
tion frequencies α at which the collision of one or several pairs
of eigenvalues takes place already at pi � 0 (they are indicated
with the red dots in Fig. 2), the spectrum becomes complex
even for infinitesimal pi values; that is, around these frequencies
the PT -symmetry-breaking threshold in pi vanishes. Figure 3
shows the dependence of this threshold on the rotation fre-
quency for the fibers with two, four, and six cores. The thresh-
old is a non-monotonic saw-tooth-like function of α. Minima
correspond to collision points for pairs of eigenvalues in the
conservative case (insets schematically show eigenvalues respon-
sible for the vanishing of the threshold). The interval between
zeros of pcri decreases with the increase of the number of cores in
the fiber. It should be stressed that in accordance with the
results of [23] for static circular arrays, the PT -symmetry-
breaking threshold at α � 0 is nonzero for odd N and zero
for even N . Notice also that in the continuous model, the
dependence pcri �α� is not periodic, in contrast to the situation
encountered in the discrete setting [27]. Figure 3 shows how
rotation qualitatively changes the spectrum of the PT system.

The inclusion of the focusing nonlinearity substantially
changes the switching dynamics in the twisted fiber, even at
pi � 0 [Fig. 1(c)]. Oscillations of the energy flow in the excited
core become non-harmonic (the input mode is normalized such

that its peak amplitude equals 1). The dependence U 1�z� can
be approximated by the Jacobi elliptic cn-function, whose
period diverges as α → αcr (the critical value of αcr ≈ 0.26 at
σ � 1). For α > αcr, the switching becomes incomplete, and
the depth of energy oscillations in the excited core decreases:
the dependence U 1�z� is well approximated by the Jacobi
elliptic dn-function. Similar modification of dynamics is
observed at fixed α upon increase of the nonlinearity strength
in twisted PT -symmetric fiber with pi ≠ 0. In this case, if α; pi
are selected such that symmetry is not broken in the linear
case, the increase of focusing nonlinearity also leads to gradual
increase of the switching length (see Fig. 4). In the
PT -symmetric fiber, the arrest of the switching simultaneously
implies a transition to the regime where the power in the
amplifying core starts to grow exponentially, which leads to
collapse-like dynamics, because almost no light can now couple
into the absorbing core.

Figure 5 presents the central result of this Letter and
illustrates how the switching length can be controlled by the
rotation frequency, nonlinearity, and gain/losses. In the
conservative twisted fiber, the switching length diverges at a
certain rotation frequency where the complete switching
(cn-type oscillations of the energy flow in individual cores)
is replaced by the incomplete one (dn-type oscillations of
the energy flow in the excited core). In the latter case, the
switching length can be defined as a distance at which the first
minimum of U 1�z� is achieved. The critical rotation frequency
αcr, at which switching length diverges, monotonically de-
creases with the increase of the nonlinearity strength σ

Fig. 2. Variation of the eigenvalues bk of modes of the system with
four (a) and six (b) cores with an increase of α at pi � 0. Red dots
indicate the crossing points where nonzero imaginary parts of the
colliding eigenvalues appear for small nonzero pi. Here pr � 10.

Fig. 3. Critical gain/loss level at which PT -symmetry breaking oc-
curs at pr � 10, as a function of the rotation frequency α, for a system
of two (a), four (b), and six (c) waveguides. Insets indicate eigenvalues
whose collision leads to symmetry breaking already at small pi values.
In (a) the collision of eigenvalues b1;2 occurs for α > 1.5, so the inset is
only to indicate how these eigenvalues approach each other.
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[Fig. 5(a)]. Importantly, similar growth and subsequent diver-
gence of the switching length with the increase of α is observed
in the nonlinear PT -symmetric fiber for different levels of
gain/losses [Fig. 5(b)]. However, in contrast to the conservative
case, here one cannot observe the regime with incomplete
switching—once energy concentrates predominantly in one
core at α > αcr, one observes its subsequent exponential
growth. Notice that αcr decreases with an increase of pi.
Finally, the switching length also strongly depends on the
strength of gain/losses, as shown in Fig. 5(c). The threshold
pcri below which one observes a periodic switching substantially
decreases in the presence of the focusing nonlinearity. Thus, the
general conclusion can be drawn that the nonlinear threshold

for PT symmetry breaking is always lower than the linear one.
The dependence of the nonlinear threshold on the rotation fre-
quency is similar to that of the linear threshold [Fig. 3(a)]: the
breakup of symmetry at σ � 0.3 occurs at pcri values that are
approximately two times lower than the linear threshold.

Summarizing, we have shown that the switching dynamics
in the PT -symmetric twisted fibers nontrivially depends on the
amplitude of gain and losses, and especially on the rotation
frequency.
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Fig. 4. Switching dynamics in the rotating two-channel system at
pi � 0.1, pr � 8, α � 0.251, and σ � 0 (a), σ � 0.37 (b).

Fig. 5. Switching length as a function of the rotation frequency
(a) at pi � 0 for σ � 0 (curve 1), σ � 0.7 (curve 2), σ � 1 (curve
3) and (b) at σ � 0.3 for pi � 0.05 (curve 1), pi � 0.07 (curve 2).
(c) Switching length as a function of the strength of gain/losses pi at
α � 0.314 for σ � 0 (curve 1) and σ � 0.3 (curve 2). Here pr � 8.
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